The VTI National Transport Library Catalogue

Stabilization of embankment slope with geofoam Jutkofsky, Walter S ; Sung, J Teh ; Negussey, Dawit

By: Jutkofsky, Walter SContributor(s): Sung, J Teh | Negussey, DawitPublication details: Transportation Research Record, 2000Description: nr 1736, s. 94-102Subject(s): USA | Roadbase | Embankment | Slope stability | Polystyrene | Foam | Expanded material | Lightweight | Black ice | Temperature | | Construction | 32 | 62Bibl.nr: VTI P8167:1736Location: Abstract: A case history is presented describing the use of expanded polystyrene (EPS) geofoam blocks to treat an unstable roadway embankment slope involving clayey soils. The selection of the geofoam treatment was based upon its ability to be constructed and have the least impact on both the environment and adjacent homeowners. The site subsurface conditions, engineering properties of EPS, design analysis, and construction phases are reviewed. Potential traffic safety problems associated with differential icing of roadways caused by the presence of geofoam blocks beneath the pavements were minimized by using a thicker subbase layer in the geofoam-treated area. Data from an instrumentation program consisting of an inclinometer, extensometers, and thermistors are presented. Pavement temperature readings collected from areas with and without geofoam treatment are compared to investigate potential differential icing on the roadway.
Item type: Reports, conferences, monographs
Current library Call number Status Date due Barcode
Statens väg- och transportforskningsinstitut

VTI:s bibliotek i Linköping
bibliotek@vti.se

Available

A case history is presented describing the use of expanded polystyrene (EPS) geofoam blocks to treat an unstable roadway embankment slope involving clayey soils. The selection of the geofoam treatment was based upon its ability to be constructed and have the least impact on both the environment and adjacent homeowners. The site subsurface conditions, engineering properties of EPS, design analysis, and construction phases are reviewed. Potential traffic safety problems associated with differential icing of roadways caused by the presence of geofoam blocks beneath the pavements were minimized by using a thicker subbase layer in the geofoam-treated area. Data from an instrumentation program consisting of an inclinometer, extensometers, and thermistors are presented. Pavement temperature readings collected from areas with and without geofoam treatment are compared to investigate potential differential icing on the roadway.

Powered by Koha