VTI:s nationella bibliotekskatalog

Normalvy MARC-vy

Design and implementation of control-theory-based microscopic traffic flow model Shi, Huajing ; Ziliaskopoulos, Athanasios K

Av: Medverkande(n): Utgivningsinformation: Transportation Research Record, 2002Beskrivning: nr 1802, s. 214-24Ämnen: Bibl.nr: VTI P8169:2002 RefLocation: Abstrakt: A microscopic traffic flow model based on the constant-time-headway policy and McRuer's man-machine crossover model was designed. Automatic control theory concepts were employed in the model formulation. The constant-time-headway policy was used to generate the command model of a human driver's decision for vehicle acceleration or deceleration. This command is the input signal fed into the driver-vehicle dynamics suggested by the crossover model. The proposed model was mathematically formulated, designed, implemented, and numerically simulated. The stability properties and validity of the proposed model were analyzed on the basis of the simulation results. It was demonstrated that the proposed model can reproduce well-known traffic phenomena such as shock waves, intersection starting and stopping waves, and loop structures of flow-density and speed-density plots.
Exemplartyp: Rapport, konferenser, monografier
Bestånd
Aktuellt bibliotek Hyllsignatur Status Förfallodatum Streckkod
Statens väg- och transportforskningsinstitut Tillgänglig

A microscopic traffic flow model based on the constant-time-headway policy and McRuer's man-machine crossover model was designed. Automatic control theory concepts were employed in the model formulation. The constant-time-headway policy was used to generate the command model of a human driver's decision for vehicle acceleration or deceleration. This command is the input signal fed into the driver-vehicle dynamics suggested by the crossover model. The proposed model was mathematically formulated, designed, implemented, and numerically simulated. The stability properties and validity of the proposed model were analyzed on the basis of the simulation results. It was demonstrated that the proposed model can reproduce well-known traffic phenomena such as shock waves, intersection starting and stopping waves, and loop structures of flow-density and speed-density plots.

Teknik från Koha