VTI:s nationella bibliotekskatalog

Normalvy MARC-vy

Three-dimensional analysis of continuously reinforced concrete pavements Kim, Seong-Min ; Won, Moon C ; McCullough, B Frank

Av: Medverkande(n): Utgivningsinformation: Transportation Research Record, 2000Beskrivning: nr 1730, s. 43-52Ämnen: Bibl.nr: VTI P8167:1730Location: Abstrakt: Continuously reinforced concrete pavement (CRCP) performance depends primarily on early-age cracks that result from changes in temperature and drying shrinkage. Presented is the behavior of the CRCP due to the temperature change obtained by using a three-dimensional finite element model. The nonlinear effects of the bond-slip between concrete and steel and between concrete and base have been studied. Modeling for the curling effect and for the viscoelastic material characteristics also has been considered. The results from the two-dimensional and three-dimensional models have been compared to verify the possibility of using a two-dimensional model. From this study, it was found that crack width and concrete stress are dependent on the transverse steel arrangement near the edge (longitudinal joint), but they are almost independent in the interior of the slab. The tensile stress occurring at the top of the edge on the transverse steel location can be higher than that occurring at the top of the slab center. This represents the possibility of forming a transverse crack from the edge on the transverse steel location. The two-dimensional model with the plane stress element gives results very close to those of the three-dimensional model, except near the edge.
Exemplartyp: Rapport, konferenser, monografier
Bestånd
Aktuellt bibliotek Hyllsignatur Status Förfallodatum Streckkod
Statens väg- och transportforskningsinstitut Tillgänglig

Continuously reinforced concrete pavement (CRCP) performance depends primarily on early-age cracks that result from changes in temperature and drying shrinkage. Presented is the behavior of the CRCP due to the temperature change obtained by using a three-dimensional finite element model. The nonlinear effects of the bond-slip between concrete and steel and between concrete and base have been studied. Modeling for the curling effect and for the viscoelastic material characteristics also has been considered. The results from the two-dimensional and three-dimensional models have been compared to verify the possibility of using a two-dimensional model. From this study, it was found that crack width and concrete stress are dependent on the transverse steel arrangement near the edge (longitudinal joint), but they are almost independent in the interior of the slab. The tensile stress occurring at the top of the edge on the transverse steel location can be higher than that occurring at the top of the slab center. This represents the possibility of forming a transverse crack from the edge on the transverse steel location. The two-dimensional model with the plane stress element gives results very close to those of the three-dimensional model, except near the edge.

Teknik från Koha