Välkommen till Transportbibliotekets katalog

Normalvy MARC-vy

Mechanical behavior of ultrathin whitetopping structure under stationary and moving loads Nishizawa, Tatsuo ; Murata, Yoshiki ; Kokubun, Katsuro

Av: Medverkande: Utgivningsinformation: Transportation Research Record, 2003Beskrivning: nr 1823, s. 102-10Ämnen: Bibl.nr: VTI P8169:2003 Ref ; VTI P8167Location: Abstrakt: The structural design of ultrathin whitetopping (UTW) requires precise predictions of the loading stresses in the concrete slabs. A plate finite element model (FEM) is not used for structures with UTW because the model is not able to account for the asphalt subbase behaviors and the mechanical interaction between the concrete slab and asphalt subbase. A three-dimensional FEM (3DFEM) was used for the stress calculation of UTW. To take into account the mechanical interaction at the interface between the concrete slab and asphalt subbase as well as the load transfer across the joint, a general interface element was developed and incorporated into 3DFEM. Also, the viscosities of asphalt materials were considered by the viscoelastic formulation in the 3DFEM. A loading test was conducted on a test pavement. Stationary and moving loads were applied to the concrete slabs, and the strains in the slabs and the asphalt subbase were measured. By comparing the strains computed by 3DFEM with the measured strains, it was found that the viscosity of the asphalt subbase and the interface condition significantly affect the stresses in the concrete slab.
Exemplartyp: Rapport, konferenser, monografier
Bestånd
Aktuellt bibliotek Status
Statens väg- och transportforskningsinstitut Tillgänglig

The structural design of ultrathin whitetopping (UTW) requires precise predictions of the loading stresses in the concrete slabs. A plate finite element model (FEM) is not used for structures with UTW because the model is not able to account for the asphalt subbase behaviors and the mechanical interaction between the concrete slab and asphalt subbase. A three-dimensional FEM (3DFEM) was used for the stress calculation of UTW. To take into account the mechanical interaction at the interface between the concrete slab and asphalt subbase as well as the load transfer across the joint, a general interface element was developed and incorporated into 3DFEM. Also, the viscosities of asphalt materials were considered by the viscoelastic formulation in the 3DFEM. A loading test was conducted on a test pavement. Stationary and moving loads were applied to the concrete slabs, and the strains in the slabs and the asphalt subbase were measured. By comparing the strains computed by 3DFEM with the measured strains, it was found that the viscosity of the asphalt subbase and the interface condition significantly affect the stresses in the concrete slab.