The VTI National Transport Library Catalogue

Use of path objects for air traffic control Barrer, John N

By: Barrer, John NPublication details: Transportation Research Record, 2000Description: nr 1703, s. 1-6Subject(s): USA | Aircraft | Traffic control | PrdBibl.nr: VTI P8167:1703Location: Abstract: A path object is a set of instructions plus the values of associated parameters that would be used by an aircraft's flight management system (FMS) or area navigation (RNAV) computer to construct a flight trajectory on the basis of the values of the parameters provided by the pilot or air traffic control (ATC) system. The concept of path objects and its applicability for development of FMS- or RNAV-based flight paths for aircraft routes are described. The use of path objects requires only a small number of parameters for specification of an RNAV route, and the computer then calculates the resulting flight path. Because most RNAV routes are just variations of the same basic shapes, many RNAV routes can be generated from a single path object by changing just one or two parameters. This offers the capability to reduce the size of the navigation database by a significant amount. This also allows the dynamic alteration of three-dimensional FMS-RNAV routes instead of radar vectoring, which represents a significant improvement in ATC procedures. Because of the compact expressions for the path objects, these procedures could be used in a voice communications environment as well as a data link environment. A path object can be thought of as a high-level language with which aircraft and ATC systems communicate flight path intentions. The concept of FMS- or RNAV-stored path objects is a change in thinking about the role of avionics technology. It offers a means of including the precision of the FMS-RNAV technology in the ATC system during the transition from today's system to the future's fully automated control system. This is an enabling technology that improves the ability to use and maintain FMS-RNAV in its role as a vital component of the ATC system. It has the potential to enhance future air traffic management-communication navigation surveillance concepts and applications.
Item type: Reports, conferences, monographs
Current library Call number Status Date due Barcode
Statens väg- och transportforskningsinstitut

VTI:s bibliotek i Linköping
bibliotek@vti.se

Available

A path object is a set of instructions plus the values of associated parameters that would be used by an aircraft's flight management system (FMS) or area navigation (RNAV) computer to construct a flight trajectory on the basis of the values of the parameters provided by the pilot or air traffic control (ATC) system. The concept of path objects and its applicability for development of FMS- or RNAV-based flight paths for aircraft routes are described. The use of path objects requires only a small number of parameters for specification of an RNAV route, and the computer then calculates the resulting flight path. Because most RNAV routes are just variations of the same basic shapes, many RNAV routes can be generated from a single path object by changing just one or two parameters. This offers the capability to reduce the size of the navigation database by a significant amount. This also allows the dynamic alteration of three-dimensional FMS-RNAV routes instead of radar vectoring, which represents a significant improvement in ATC procedures. Because of the compact expressions for the path objects, these procedures could be used in a voice communications environment as well as a data link environment. A path object can be thought of as a high-level language with which aircraft and ATC systems communicate flight path intentions. The concept of FMS- or RNAV-stored path objects is a change in thinking about the role of avionics technology. It offers a means of including the precision of the FMS-RNAV technology in the ATC system during the transition from today's system to the future's fully automated control system. This is an enabling technology that improves the ability to use and maintain FMS-RNAV in its role as a vital component of the ATC system. It has the potential to enhance future air traffic management-communication navigation surveillance concepts and applications.

Powered by Koha