The VTI National Transport Library Catalogue

Normal view MARC view

Effectiveness of portland cement concrete curing compounds Whiting, Nancy M ; Snyder, Mark B

By: Contributor(s): Publication details: Transportation Research Record, 2003Description: nr 1834, s. 59-68Subject(s): Bibl.nr: VTI P8169:2003 Ref ; VTI P8167Location: Abstract: Many different spray-on compounds are available for curing concrete, including newer products that are intended to address the environmental concerns associated with high volatile organic compound (VOC) contents. A laboratory study was conducted to examine the effectiveness of different types of curing compounds in retaining water for hydration, promoting concrete strength, and reducing permeability, relative to classic curing techniques such as plastic sheeting and ponding and relative to the use of no curing treatment. Comparisons of moisture loss, compressive strength, permeability, and capillary porosity were made for samples representing three high-VOC curing compounds, three low-VOC curing compounds, water curing, and plastic-sheet curing, and for samples with no curing treatment after 3 days and 28 days of curing. The performance of the six compounds tested varied greatly, but none of the compounds performed as well as the samples cured with water or plastic sheeting. All compounds performed better than samples with no curing treatment.
Item type: Reports, conferences, monographs
Holdings
Current library Call number Status Date due Barcode
Statens väg- och transportforskningsinstitut Available

Many different spray-on compounds are available for curing concrete, including newer products that are intended to address the environmental concerns associated with high volatile organic compound (VOC) contents. A laboratory study was conducted to examine the effectiveness of different types of curing compounds in retaining water for hydration, promoting concrete strength, and reducing permeability, relative to classic curing techniques such as plastic sheeting and ponding and relative to the use of no curing treatment. Comparisons of moisture loss, compressive strength, permeability, and capillary porosity were made for samples representing three high-VOC curing compounds, three low-VOC curing compounds, water curing, and plastic-sheet curing, and for samples with no curing treatment after 3 days and 28 days of curing. The performance of the six compounds tested varied greatly, but none of the compounds performed as well as the samples cured with water or plastic sheeting. All compounds performed better than samples with no curing treatment.

Powered by Koha