The VTI National Transport Library Catalogue

MagneMotion Maglev system Thornton, Richard ; Clark, Tracy ; Stevens, Ken

By: Thornton, RichardContributor(s): Clark, Tracy | Stevens, KenPublication details: Transportation Research Record, 2003Description: nr 1838, s. 50-7Subject(s): USA | Magnetic suspension | | Size | | Passenger traffic | Propulsion | Technology | Cost | Journey time | J16 | J01 | J02Bibl.nr: VTI P8169:2003 Ref ; VTI P8167Location: Abstract: The MagneMotion Maglev system, called M3, is an alternative to all conventional guided transportation systems. Advantages include major reductions in capital cost, travel time, operating cost, noise, and energy consumption. Vans or small-bus size vehicles operating automatically with headways of only a few seconds can be moved in platoons to achieve capacities of at least 12,000 passengers per hour per direction. Small vehicles lead to lighter guideways, shorter waiting time for passengers, lower power requirements for wayside inverters, more effective regenerative braking, and reduced station size. The design objectives were achieved by taking advantage of high-energy permanent magnets, improved microprocessor-based power electronics, precise position sensing, lightweight vehicles, a guideway matched to the vehicles, and the ability to use sophisticated computer-aided design tools for analysis, simulation, and optimization. Arrays of permanent magnets on both sides of a vehicle provide suspension, guidance, and a field for linear synchronous motor propulsion. Feedback-controlled current in control coils wound around the magnets stabilizes the suspension. The motor windings are integrated into suspension rails and excited by inverters along the guideway. M3 is designed to provide speeds up to 45 m/s (101 mph) and acceleration and braking up to 2 m/sq s (4.5 mph/s) without onboard propulsion equipment. Operating speeds and accelerations can be modified by changing only the power system and wayside inverters. Capital cost, travel time, and operating cost are predicted to be less than half that of any competing transit system.
Item type: Reports, conferences, monographs
Current library Call number Status Date due Barcode
Statens väg- och transportforskningsinstitut

VTI:s bibliotek i Linköping
bibliotek@vti.se

Available

The MagneMotion Maglev system, called M3, is an alternative to all conventional guided transportation systems. Advantages include major reductions in capital cost, travel time, operating cost, noise, and energy consumption. Vans or small-bus size vehicles operating automatically with headways of only a few seconds can be moved in platoons to achieve capacities of at least 12,000 passengers per hour per direction. Small vehicles lead to lighter guideways, shorter waiting time for passengers, lower power requirements for wayside inverters, more effective regenerative braking, and reduced station size. The design objectives were achieved by taking advantage of high-energy permanent magnets, improved microprocessor-based power electronics, precise position sensing, lightweight vehicles, a guideway matched to the vehicles, and the ability to use sophisticated computer-aided design tools for analysis, simulation, and optimization. Arrays of permanent magnets on both sides of a vehicle provide suspension, guidance, and a field for linear synchronous motor propulsion. Feedback-controlled current in control coils wound around the magnets stabilizes the suspension. The motor windings are integrated into suspension rails and excited by inverters along the guideway. M3 is designed to provide speeds up to 45 m/s (101 mph) and acceleration and braking up to 2 m/sq s (4.5 mph/s) without onboard propulsion equipment. Operating speeds and accelerations can be modified by changing only the power system and wayside inverters. Capital cost, travel time, and operating cost are predicted to be less than half that of any competing transit system.

Powered by Koha