The VTI National Transport Library Catalogue

Normal view MARC view

Modeling integrated lane-changing behavior Toledo, Tomer ; Koutsopoulos, Haris N ; Ben-Akiva, Moshe E

By: Contributor(s): Publication details: Transportation Research Record, 2003Description: nr 1857, s. 30-8Subject(s): Bibl.nr: VTI P8169:2003 Ref ; VTI P8167Location: Abstract: The lane-changing model is an important component within microscopic traffic simulation tools. Following the emergence of these tools in recent years, interest in the development of more reliable lane-changing models has increased. Lane-changing behavior is also important in several other applications such as capacity analysis and safety studies. Lane-changing behavior is usually modeled in two steps: (a) the decision to consider a lane change, and (b) the decision to execute the lane change. In most models, lane changes are classified as either mandatory (MLC) or discretionary (DLC). MLC are performed when the driver must leave the current lane. DLC are performed to improve driving conditions. Gap acceptance models are used to model the execution of lane changes. The classification of lane changes as either mandatory or discretionary prohibits capturing trade-offs between these considerations. The result is a rigid behavioral structure that does not permit, for example, overtaking when mandatory considerations are active. Using these models within a microsimulator may result in unrealistic traffic flow characteristics. In addition, little empirical work has been done to rigorously estimate the parameters of lane-changing models. An integrated lane-changing model, which allows drivers to jointly consider mandatory and discretionary considerations, is presented. Parameters of the model are estimated with detailed vehicle trajectory data.
Item type: Reports, conferences, monographs
Holdings
Current library Call number Status Date due Barcode
Statens väg- och transportforskningsinstitut Available

The lane-changing model is an important component within microscopic traffic simulation tools. Following the emergence of these tools in recent years, interest in the development of more reliable lane-changing models has increased. Lane-changing behavior is also important in several other applications such as capacity analysis and safety studies. Lane-changing behavior is usually modeled in two steps: (a) the decision to consider a lane change, and (b) the decision to execute the lane change. In most models, lane changes are classified as either mandatory (MLC) or discretionary (DLC). MLC are performed when the driver must leave the current lane. DLC are performed to improve driving conditions. Gap acceptance models are used to model the execution of lane changes. The classification of lane changes as either mandatory or discretionary prohibits capturing trade-offs between these considerations. The result is a rigid behavioral structure that does not permit, for example, overtaking when mandatory considerations are active. Using these models within a microsimulator may result in unrealistic traffic flow characteristics. In addition, little empirical work has been done to rigorously estimate the parameters of lane-changing models. An integrated lane-changing model, which allows drivers to jointly consider mandatory and discretionary considerations, is presented. Parameters of the model are estimated with detailed vehicle trajectory data.

Powered by Koha