Welcome to the National Transport Library Catalogue

Normal view MARC view

Automated accident detection in intersections via digital audio signal processing Bruce, Lori Mann et al

By: Publication details: Transportation Research Record, 2003Description: nr 1840, s. 186-92Subject(s): Bibl.nr: VTI P8169:2003 Ref ; VTI P8167Location: Abstract: A system for automated traffic accident detection in intersections was designed. The input to the system is a 3-s segment of audio signal. The system can be operated in two modes: the two-class and multiclass modes. The output of the two-class mode is a label of "crash" or "noncrash." In the multiclass mode of operation, the system identifies crashes as well as several types of noncrash incidents, including normal traffic and construction sounds. The system is composed of three main signal processing stages: feature extraction, feature reduction, and classification. Five methods of feature extraction were investigated and compared; these are based on the discrete wavelet transform, fast Fourier transform, discrete cosine transform, real cepstral transform, and mel frequency cepstral transform. Statistical methods are used for feature optimization and classification. Three types of classifiers are investigated and compared; these are the nearest-mean, maximum-likelihood, and nearest-neighbor methods. The results of the study show that the optimum design uses wavelet-based features in combination with the maximum-likelihood classifier. The system is computationally inexpensive relative to the other methods investigated, and the system consistently results in accident detection accuracies of 95% to 100% when the audio signal has a signal-to-noise-ratio of at least 0 decibels.
Item type: Reports, conferences, monographs
Holdings
Current library Status
Statens väg- och transportforskningsinstitut Available

A system for automated traffic accident detection in intersections was designed. The input to the system is a 3-s segment of audio signal. The system can be operated in two modes: the two-class and multiclass modes. The output of the two-class mode is a label of "crash" or "noncrash." In the multiclass mode of operation, the system identifies crashes as well as several types of noncrash incidents, including normal traffic and construction sounds. The system is composed of three main signal processing stages: feature extraction, feature reduction, and classification. Five methods of feature extraction were investigated and compared; these are based on the discrete wavelet transform, fast Fourier transform, discrete cosine transform, real cepstral transform, and mel frequency cepstral transform. Statistical methods are used for feature optimization and classification. Three types of classifiers are investigated and compared; these are the nearest-mean, maximum-likelihood, and nearest-neighbor methods. The results of the study show that the optimum design uses wavelet-based features in combination with the maximum-likelihood classifier. The system is computationally inexpensive relative to the other methods investigated, and the system consistently results in accident detection accuracies of 95% to 100% when the audio signal has a signal-to-noise-ratio of at least 0 decibels.