Welcome to the National Transport Library Catalogue

Normal view MARC view

Freeway travel time estimation based on spot speed measurements Zhang, Wang

By: Publication details: Blacksburg, VA Virginia Polytechnic Institute and State University, 2006Description: 114 sSubject(s): Online resources: Dissertation note: Diss. Blacksburg, VA : Virginia Polytechnic Institute and State University, 2006 Abstract: As one of the kernel components of ITS technology, Travel Time Estimation (TTE) has been a high-interest topic in highway operation and management for years. Out of numerous vehicle detection technologies being applied in this project, intrusive loop detector, as the representative of spot measurement devices, is the most common. The ultimate goal of this dissertation is to seek a TTE approach based primarily on spot speed measurement and capable of successfully performing in a certain accuracy range under various traffic conditions. The provision of real-time traffic information could offer significant benefits for commuters looking to make optimum travel decisions. The proposed research effort attempts to characterize typical variability in traffic conditions using traffic volume data obtained from loop detectors on I-66 Virginia during a 3-month period. The detectors logged time-mean speed, volume, and occupancy measurements for each station and lane combination. Using these data, the study examines the spatiotemporal link and path flow variability of weekdays and weekends. The generation of path flows is made through the use of a synthetic maximum likelihood approach. Statistical Analysis of Variance (ANOVA) tests are performed on the data. The results demonstrate that in terms of link flows and total traffic demand, Mondays and Fridays are similar to core weekdays (Tuesdays, Wednesdays, and Thursdays). In terms of path flows, Fridays appear to be different from core weekdays. A common procedure for estimating roadway travel times is to use either queuing theory or shockwave analysis procedures. However, a number of studies have claimed that deterministic queuing theory and shock-wave analysis are fundamentally different, producing different delay estimates for solving bottleneck problems.
Item type: Dissertation
No physical items for this record

Diss. Blacksburg, VA : Virginia Polytechnic Institute and State University, 2006

As one of the kernel components of ITS technology, Travel Time Estimation (TTE) has been a high-interest topic in highway operation and management for years. Out of numerous vehicle detection technologies being applied in this project, intrusive loop detector, as the representative of spot measurement devices, is the most common. The ultimate goal of this dissertation is to seek a TTE approach based primarily on spot speed measurement and capable of successfully performing in a certain accuracy range under various traffic conditions. The provision of real-time traffic information could offer significant benefits for commuters looking to make optimum travel decisions. The proposed research effort attempts to characterize typical variability in traffic conditions using traffic volume data obtained from loop detectors on I-66 Virginia during a 3-month period. The detectors logged time-mean speed, volume, and occupancy measurements for each station and lane combination. Using these data, the study examines the spatiotemporal link and path flow variability of weekdays and weekends. The generation of path flows is made through the use of a synthetic maximum likelihood approach. Statistical Analysis of Variance (ANOVA) tests are performed on the data. The results demonstrate that in terms of link flows and total traffic demand, Mondays and Fridays are similar to core weekdays (Tuesdays, Wednesdays, and Thursdays). In terms of path flows, Fridays appear to be different from core weekdays. A common procedure for estimating roadway travel times is to use either queuing theory or shockwave analysis procedures. However, a number of studies have claimed that deterministic queuing theory and shock-wave analysis are fundamentally different, producing different delay estimates for solving bottleneck problems.