Welcome to the National Transport Library Catalogue

Normal view MARC view

Experimental study on ultimate behavior at negative moment regions of composite bridges Ahn, Il-Sang et al

By: Series: ; 1928Publication details: Transportation Research Record, 2005Description: s. 3-12Subject(s): Bibl.nr: VTI P8167:1928Location: Abstract: This paper presents experimental results of the ultimate behavior of the negative moment region of a quarter-scale full model and a half-scale subassemblage model of a two-span continuous composite bridge of concrete deck slab on steel girder. The two specimens are based on a prototype bridge that has a large girder spacing [3,800 mm (13 ft)]. At the ultimate state, it is shown that a larger portion of the deck is activated to resist tensile stress compared with the effective width specified in the AASHTO load and resistance factor design bridge specifications. Also, a plastic hinge that forms at the internal support has enough rotational capacity (ductility) to enable development of a second plastic hinge within the span. Experimental results show a reasonably good match with accompanying finite element method analyses.
Item type: Reports, conferences, monographs
Holdings
Current library Status
Statens väg- och transportforskningsinstitut Available

This paper presents experimental results of the ultimate behavior of the negative moment region of a quarter-scale full model and a half-scale subassemblage model of a two-span continuous composite bridge of concrete deck slab on steel girder. The two specimens are based on a prototype bridge that has a large girder spacing [3,800 mm (13 ft)]. At the ultimate state, it is shown that a larger portion of the deck is activated to resist tensile stress compared with the effective width specified in the AASHTO load and resistance factor design bridge specifications. Also, a plastic hinge that forms at the internal support has enough rotational capacity (ductility) to enable development of a second plastic hinge within the span. Experimental results show a reasonably good match with accompanying finite element method analyses.