Welcome to the National Transport Library Catalogue

Normal view MARC view

How can forest-derived methane complement biogas from anaerobic digestion in the Swedish transport sector? Lönnqvist, Tomas ; Grönkvist, Stefan ; Sandberg, Thomas

By: Contributor(s): Series: Report ; 2015:11Publication details: Göteborg f3 the Swedish Knowledge Centre for Renewable Transportation Fuels, 2016Description: 70 sSubject(s): Online resources: Abstract: Forest-derived methane may contribute significantly to a vehicle fleet independent of fossil fuels by 2030. At present, there is sufficient technical knowledge about energy conversion methods and several Swedish actors have investigated and prepared investments in production facilities, but the technology is not commercially mature yet and it needs support during a development period. Investments in the technology have become less favorable because of the drop in the oil price in 2014. In addition, the predictability of the policy instruments supporting production and use of renewable energy are perceived as low by investors. This report emphasize that these factors combined are major reasons why potential investments are postponed. We have conducted a literature study and an interview study with three industry actors to answer the question “How can forest derived methane complement biogas from anaerobic digestion in the Swedish transport sector?” Interviews were mostly conducted in situ and in co-operation with the f3 project “Examining systemic constraints and drivers for production of forest-derived transport biofuels” (f3 2014-002370). The literature study included the recent development of renewable transport fuels in Sweden, existing and proposed policy instruments, and possible technical pathways from forest biomass to transport fuels. Sweden has accomplished a high share of renewables in the transport sector – 12 % based on energy content or 17 % when accounting in accordance with the EU Renewable Energy Sources Directive (RES). Thus, Sweden has the highest share of renewables in the transport sector among the member states and has with a good margin accomplished the EU-RES target of 10 % renewables by 2020. The use of electricity in plug-in electric vehicles is not included in these figures and the number of electric vehicles is increasing rapidly. The most common biofuels in transport are biodiesel, ethanol, and biogas. Biodiesel increases rapidly, mainly through low blend-in, and is now the most common biofuel in the Swedish transport sector. The majority is HVO (Hydrotreated Vegetable Oils), but the share of FAME (Fatty Acid Methyl Esters) is still considerable. The use of ethanol peaked during 2008 and has been decreasing since then. Ethanol is distributed through both low and high blend-in (E5 and E85). The use of upgraded biogas in the transport sector has increased continuously since its introduction 1996. Upgraded biogas is complemented by natural gas to meet the vehicle gas demand. A voluntary agreement among the distributors maintains a minimum biogas share that corresponds to 50 %. The biogas share is much higher today (74 % by volume, average Jan.-Aug. 2015) and some large end-users use pure upgraded biogas. Upgraded biogas is mainly distributed in compressed form through gas cylinders (79 %), but also through injection to the natural gas grid (21 %). Very little biogas is distributed in liquid form (LBG).
Item type: Reports, conferences, monographs
No physical items for this record

Forest-derived methane may contribute significantly to a vehicle fleet independent of fossil fuels by 2030. At present, there is sufficient technical knowledge about energy conversion methods and several Swedish actors have investigated and prepared investments in production facilities, but the technology is not commercially mature yet and it needs support during a development period. Investments in the technology have become less favorable because of the drop in the oil price in 2014. In addition, the predictability of the policy instruments supporting production and use of renewable energy are perceived as low by investors. This report emphasize that these factors combined are major reasons why potential investments are postponed. We have conducted a literature study and an interview study with three industry actors to answer the question “How can forest derived methane complement biogas from anaerobic digestion in the Swedish transport sector?” Interviews were mostly conducted in situ and in co-operation with the f3 project “Examining systemic constraints and drivers for production of forest-derived transport biofuels” (f3 2014-002370). The literature study included the recent development of renewable transport fuels in Sweden, existing and proposed policy instruments, and possible technical pathways from forest biomass to transport fuels. Sweden has accomplished a high share of renewables in the transport sector – 12 % based on energy content or 17 % when accounting in accordance with the EU Renewable Energy Sources Directive (RES). Thus, Sweden has the highest share of renewables in the transport sector among the member states and has with a good margin accomplished the EU-RES target of 10 % renewables by 2020. The use of electricity in plug-in electric vehicles is not included in these figures and the number of electric vehicles is increasing rapidly. The most common biofuels in transport are biodiesel, ethanol, and biogas. Biodiesel increases rapidly, mainly through low blend-in, and is now the most common biofuel in the Swedish transport sector. The majority is HVO (Hydrotreated Vegetable Oils), but the share of FAME (Fatty Acid Methyl Esters) is still considerable. The use of ethanol peaked during 2008 and has been decreasing since then. Ethanol is distributed through both low and high blend-in (E5 and E85). The use of upgraded biogas in the transport sector has increased continuously since its introduction 1996. Upgraded biogas is complemented by natural gas to meet the vehicle gas demand. A voluntary agreement among the distributors maintains a minimum biogas share that corresponds to 50 %. The biogas share is much higher today (74 % by volume, average Jan.-Aug. 2015) and some large end-users use pure upgraded biogas. Upgraded biogas is mainly distributed in compressed form through gas cylinders (79 %), but also through injection to the natural gas grid (21 %). Very little biogas is distributed in liquid form (LBG).