Welcome to the National Transport Library Catalogue

Normal view MARC view

Characteristics of nearside car crashes : an integrated approach to side impact safety Sunnevång, Cecilia

By: Series: Umeå University medical dissertations ; 1855Publication details: Umeå Umeå universitet, 2016Description: 66 sISBN:
  • 9789176015872
Subject(s): Other classification:
Online resources: Dissertation note: Diss. Umeå : Umeå universitet, 2016 Abstract: Approximately 1.25 million people globally are killed in traffic accidents yearly. To achieve the UN Global Goal of a 50% reduction of fatal and serious injuries in 2020 a safer infrastructure, as well as new safety technologies, will be needed. Side crashes represent 20% of all serious and 25 % of fatal injuries. The overall aim of this thesis is to provide guidelines for improved side impact protection. First, by characterizing nearside crashes and injury outcome, including injuries from the farside occupant, for non-senior and senior front seat occupants. Second, to determine whether the WorldSID dummy provides opportunities for improved in-crash occupant protection. And third, by relating in-crash occupant protection to pre-crash countermeasures, to explore a holistic approach for side crashes using the integrated safety chain from safe driving to crash. NASS/CDS data for both older and modern vehicles was used to provide exposure, incidence, and risk for fatal injury as well as detailed injury distribution and crash characteristics. The WorldSID dummy was compared to Post Mortem Human Subjects (PMHS) in impactor tests at high and low severities to demonstrate the possibilities of this tool. Crash tests were performed to evaluate WorldSID crash test dummy assessments of injuries found in the NASS/CDS data. The integrated safety chain was used to demonstrate how to evaluate occupant protection in side crashes from a larger perspective, involving infrastructure and Automated Emergency Braking. Most side crashes occur at intersections. The head, thorax, and pelvis are the most frequently injured body regions, and seniors have a higher risk for rib fractures compared to non-seniors. The WorldSID dummy response was similar to the PMHS response at the higher impact speed, but not at the lower. In conjunction with improved airbags infrastructural change, and the use of Automated Emergency Braking, can effectively reduce the number of fatalities and injured occupants in side impacts.
Item type: Dissertation
No physical items for this record

Diss. Umeå : Umeå universitet, 2016

Approximately 1.25 million people globally are killed in traffic accidents yearly. To achieve the UN Global Goal of a 50% reduction of fatal and serious injuries in 2020 a safer infrastructure, as well as new safety technologies, will be needed. Side crashes represent 20% of all serious and 25 % of fatal injuries. The overall aim of this thesis is to provide guidelines for improved side impact protection. First, by characterizing nearside crashes and injury outcome, including injuries from the farside occupant, for non-senior and senior front seat occupants. Second, to determine whether the WorldSID dummy provides opportunities for improved in-crash occupant protection. And third, by relating in-crash occupant protection to pre-crash countermeasures, to explore a holistic approach for side crashes using the integrated safety chain from safe driving to crash. NASS/CDS data for both older and modern vehicles was used to provide exposure, incidence, and risk for fatal injury as well as detailed injury distribution and crash characteristics. The WorldSID dummy was compared to Post Mortem Human Subjects (PMHS) in impactor tests at high and low severities to demonstrate the possibilities of this tool. Crash tests were performed to evaluate WorldSID crash test dummy assessments of injuries found in the NASS/CDS data. The integrated safety chain was used to demonstrate how to evaluate occupant protection in side crashes from a larger perspective, involving infrastructure and Automated Emergency Braking. Most side crashes occur at intersections. The head, thorax, and pelvis are the most frequently injured body regions, and seniors have a higher risk for rib fractures compared to non-seniors. The WorldSID dummy response was similar to the PMHS response at the higher impact speed, but not at the lower. In conjunction with improved airbags infrastructural change, and the use of Automated Emergency Braking, can effectively reduce the number of fatalities and injured occupants in side impacts.