Performance measures of road infrastructure : a life cycle thinking approach Babak Ebrahimi.
Language: English Series: Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie ; 4624Publication details: Göteborg : Chalmers University of Technology, 2019Description: 101 sISBN:- 9789179051570
Härtill 4 uppsatser
Diss. (sammanfattning) Göteborg : Chalmers tekniska högskola, 2019
Roads have been an important asset of human society and the approach we adopt towards planning, designing, constructing, operating, and maintaining of the road infrastructure has significant consequences in the long-term for not only the humans, but all species on planet Earth. Hence, the lifecycle performance of the road infrastructure that sustain our socioeconomic development with a low environmental impact, while fulfilling their technical and functional requirements is of critical importance and needs to be improved. This thesis aims to understand the nature of the information that helps improve the performance of road infrastructure over their lifecycle and propose solutions that close the existing research gaps.
This thesis is essentially divided into two parts. In the first part, it focuses on the current lifecycle thinking towards the public physical infrastructure. It carries out a survey of the literature to gain a holistic understanding of the current challenges that infrastructure faces, namely population growth, anthropogenic greenhouse gas emissions, land use and coverage change, and abiotic depletion.
In the second part, a systematic desk (or secondary) research and regular interactions with the Norwegian Public Road Administration (NPRA) were carried out which revealed the following research gaps to improve the environmental and economic performance of the Norwegian road networks: (1) measure environmental performance of the construction machinery over their entire lifecycle based on regionalized data, which helps increase both the resolution and exclusiveness of the results; (2) estimate lifetimes of pavements based on their technical performance, which helps in improving the validity of the results when benchmarking different pavements with respect to different criteria, e.g., environment, economy, and society, and supports the decision-making at different phases of road infrastructure projects; and (3) capture material flows and stocks of road infrastructure, which helps get an overview of the availability in terms of quantities and time of the secondary materials to theoretically substitute the virgin/primary materials. Hence, potential approaches were used by means of different methods and models, namely geographical information systems (GIS), life cycle assessment (LCA), survival analysis, decision tree model, and material flow accounting (MFA), for the three focus areas to bridge the identified gaps. Also, the Norwegian input data were applied to show the proposed approaches quantitatively.