Machine learning models for predictive maintenance Sergii Voronov.
Language: English Series: Linköping studies in science and technology. Dissertations ; 2040Publication details: Linköping : Linköping University Electronic Press, 2020Description: 75 sISBN:- 9789179299231
Sammanfattning jämte 4 uppsatser
Diss. (sammanfattning) Linköping : Linköpings universitet, 2020
The amount of goods produced and transported around the world each year increases and heavy-duty trucks are an important link in the logistic chain. To guarantee reliable delivery a high degree of availability is required, i.e., avoid standing by the road unable to continue the transport mission. Unplanned stops by the road do not only cost due to the delay in delivery, but can also lead to damaged cargo. Vehicle downtime can be reduced by replacing components based on statistics of previous failures. However, such an approach is both expensive due to the required frequent visits to a workshop and inefficient as many components from the vehicles in the fleet are still operational. A prognostic method, allowing for vehicle individualized maintenance plans, therefore poses a significant potential in the automotive field. The prognostic method estimates component degradation and remaining useful life based on recorded data and how the vehicle has been operated. Lead-acid batteries is a part of the electrical power system in a heavy-duty truck, primarily responsible for powering the starter motor but also powering auxiliary units, e.g., cabin heating and kitchen equipment, which makes the battery a vital component for vehicle availability. Developing physical models of battery degradation is a difficult process which requires access to battery health sensing that is not available in the given study as well a detailed knowledge of battery chemistry. An alternative approach, considered in this work, is data-driven methods based on large amounts of logged data describing vehicle operation conditions. In the use-case studied, recorded data is not closely related to battery health which makes battery prognostic challenging. Data is collected during infrequent and non-equidistant visits to a workshop and there are complex dependencies between variables in the data. The main aim of this work has been to develop a framework and methods for estimating lifetime of lead-acid batteries using data-driven methods for condition-based maintenance. The methodology is general and can be applicable for prognostics of other components.
Mängden gods som produceras och transporteras världen runt ökar och tunga fordon är en viktig del i logistikkedjan. För att garantera pålitliga leveranser krävs hög tillgänglighet hos fordonen genom att bland annat undvika oplanerade stopp längs vägen. Tid då fordonet ej är tillgängligt kan reduceras genom att byta ut komponenter baserat på statistik från tidigare fel. En sådan ansats kan dock vara dyr på grund av för täta besök på verkstäder samt att många komponenter fungerar avsevärt längre beroende på hur hårt komponenten använts. En prognostikmetod för individualiserade underhållsplaner har därför en stor potential i fordonsfältet. Prognostikmetoden uppskattar komponenters degradation och tillgänglig livstid baserat på registrerade data och hur fordonet har använts. Blysyrabatterier är en del av det elektriska kraftsystemet i en lastbil, primärt ansvariga för att kraftsätta startmotor, men också för att ge kraft åt hjälpsystem som kabinvärme och köksutrustning, vilket betyder att batteriet är en viktig komponent för fordonets tillgänglighet. Att utveckla fysikaliska modeller för batteridegradation är svårt och kräver tillgång till mätdata direkt kopplat till batteriets hälsa, något som inte är tillgängligt i det här arbetet. En alternativ ansats, som utforskas här, är datadrivna metoder baserade på stora mängder inspelade data som beskriver hur fordonet använts. I studien är insamlad data ej direkt relaterad till batterihälsa vilket gör prognostikproblemet utmanande.