Motion planning and control of automated vehicles in critical situations
Language: English Summary language: Swedish Series: TRITA-ITM-AVL ; 2021: 23Publication details: Stockholm : KTH Royal Institute of Technology, 2021Description: 87 sISBN:- 9789178738915
Härtill 4 uppsatser
Diss. (sammanfattning) Stockholm : Kungliga Tekniska högskolan, 2021
The road traffic environment is inherently uncertain and unpredictable. An automated vehicle (AV) deployed in such an environment will eventually experience unforeseen critical situations, i.e., situations in which the probability of having an accident is rapidly increased compared to a nominal driving situation. Critical situations can occur for example due to internal faults or performance limitations of the AV, abrupt changes in operational conditions or unexpected behavior from other road users. In such critical situations, the first priority for vehicle motion control is to reduce the risk of imminent accident. If needed, the full physical capacity of the vehicle should be employed to accomplish this. These unique circumstances distinguish automated driving in critical situations from the nominal case. This work aims to tackle the problem of motion planning and control in such critical situations. We determine a set of characteristics that signify the motion planning and control problem in critical situations, in relation to state of the art algorithms. Further, we incrementally develop a motion planning and control framework, tailored for the particular circumstances of critical situations. In its current form, the framework uses a combination of numerical optimization, trajectory rollout and constraint adaptation, to allow motion planning and control with respect to time-varying actuation capabilities, while realizing a range of behaviors to mitigate accident risk in a range of critical situations.
Vägtrafikmiljön är oförutsägbar. Autonoma vägfordon i en sådan miljö kommer tids nog att hamna i oförutsedda kritiska situationer, det vill säga situationer där risken för en trafikolycka är markant högre än vid nominell körning. Kritiska situationer kan orsakas av exempelvis interna fel eller prestandabegränsningar hos autonomisystemet, av plötsliga förändringar i operationella förhållanden eller av oförutsett agerande hos medtrafikanter. I kritiska situationer är passagerarkomfort inte längre en prioritet, utan fordonets fullständiga manöverförmåga kan utnyttjas för att minimera olycksrisken. Dessa omständigheter skiljer autonom körning i kritiska situationer från det nominella fallet. Forskningsinriktningen för denna avhandling är rörelseplanering och styrning av autonoma fordon i kritiska situationer. Vi presenterar en uppsättning egenskaper som kännetecknar detta specifika problem, i relation till ledande algoritmer för rörelseplanering och styrning. Vi presenterar också vår egen stegvis utvecklade metod för att angripa problemet. I sin nuvarande form består metoden av en kombination av optimeringsbaserad och samplingsbaserad trajektorieplanering med tidsvarierande dynamik och bivillkor. Metoden gör det möjligt att representera tidsvarierande dynamik och dynamiska begränsningar hos fordonet (till exempel till följd av varierande vägförhållanden) vid planering av en mängd olika manövertyper som kan minska olycksrisken i kritiska situationer.