Välkommen till Transportbibliotekets katalog

Normalvy MARC-vy

Traffic simulation of automated shuttles in Linköping University Campus

Av: Serie: LiU-ITN-TEK-A ; 21/046Utgivningsinformation: Linköping : Linköpings universitet. Institutionen för teknik och naturvetenskap, 2021Beskrivning: 126 sÄmnen: Onlineresurser: Avhandlingskommentar: Examensarbete Abstrakt: Automated shuttles are designed to provide a clean transportation and improve access to areas such as where travelers have to walk long distances to/from bus stops. The introduction of automated shuttles in the road network might affect the safety of pedestrians and cyclists as well as traffic performance of motorized vehicles. Several demonstration trials are being conducted to study how automated shuttles operate in real traffic conditions, but they are limited to few vehicles and evaluations of traffic effects at higher penetration rates are not possible. Traffic simulation is a tool that can be used to study effects on traffic performances at different penetration rates of e.g., automated shuttles. However, automated shuttles have not yet been modeled, calibrated, and validated in microscopic traffic simulation tools. Therefore, the objective of this thesis is to model, calibrate and validate automated shuttle’s behavior using the simulation tool SUMO and data collected from the demonstration trial on the area of campus Valla Linköping University, Sweden. The pilot study consists of two automated shuttles, and they operate on a 2.1 km fixed route. The collected data by one of the automated shuttles is analyzed with a focus on the free driving behavior.
Exemplartyp: Examensarbete
Inga fysiska exemplar för denna post

Examensarbete

Automated shuttles are designed to provide a clean transportation and improve access to areas such as where travelers have to walk long distances to/from bus stops. The introduction of automated shuttles in the road network might affect the safety of pedestrians and cyclists as well as traffic performance of motorized vehicles. Several demonstration trials are being conducted to study how automated shuttles operate in real traffic conditions, but they are limited to few vehicles and evaluations of traffic effects at higher penetration rates are not possible. Traffic simulation is a tool that can be used to study effects on traffic performances at different penetration rates of e.g., automated shuttles. However, automated shuttles have not yet been modeled, calibrated, and validated in microscopic traffic simulation tools. Therefore, the objective of this thesis is to model, calibrate and validate automated shuttle’s behavior using the simulation tool SUMO and data collected from the demonstration trial on the area of campus Valla Linköping University, Sweden. The pilot study consists of two automated shuttles, and they operate on a 2.1 km fixed route. The collected data by one of the automated shuttles is analyzed with a focus on the free driving behavior.