Assessment of waveform distortion interactions in electric railway power systems
Series: Doctoral thesis / Luleå University of TechnologyPublication details: Luleå : Luleå University of Technology, 2025Description: 128 sISBN:- 9789180487887
Härtill 11 uppsatser
Diss. (sammanfattning) Luleå : Luleå tekniska universitet, 2025
Railway electrified systems are one of the most popular and essential forms of transportation globally, and the performance of those systems impacts society. The electric railway power systems (ERPS) comprehend the infrastructure and apparatus that aims to deliver power for the rolling stocks in different types of railway transportation. Due to the broad application of static power electronics, ERPS is characterized by several sources of waveform distortion. Waveform distortion is a critical power quality (PQ) issue and a challenge to managing electromagnetic compatibility (EMC) in railway systems. It englobes harmonics (disturbances synchronous with the fundamental power frequency up to 2 kHz), interharmonics (disturbances asynchronous with the fundamental power frequency up to 2 kHz), and supraharmonics (synchronous and asynchronous disturbances between 2 and 150 kHz). The ERPS has several system complexities that should be taken into consideration when assessing waveform distortion related to the characteristics of the phenomena: extensive distribution system with intricate circuit arrangements and moving single-phase loads; multiple voltage levels and electromagnetic environments, including railway grid and subsystems, as well as public grid; waveform distortion has time-varying behavior dependent on operating states of rolling stock, traffic plan, grid balancing, and spatial position of the vehicles; a mix between traditional equipment or infrastructure and population of new power electronic conversion stages with a lack of guidelines and standardization; and variety of waveform distortion sources and signatures. The objective of this research is to gain knowledge and a better understanding of waveform distortion, including not only harmonics but also interharmonics and supraharmonics in railways systems, to characterize emission sources, propagation, the impact of the operation on time-varying behaviors in several scales, interaction among systems and subsystems, and adverse effects.